
Digital Signatures
Cole Watson

Opening Activity

• Dr. Cusack owns a lockbox, padlock, and keys.

• The padlock is private and unique to him.

• The keys are public and they can only open Dr.
Cusack’s lockbox.

• Only Dr. Cusack can lock his padlock (It’s a very
smart padlock).

Activity (cont)

• Dr. Cusack has promised the whole class that
everyone will receive an A on their final exam.

• To hold true to his word, he writes his promise
on a piece of paper and locks it into the lockbox
with his padlock.

• He then gives his keys to President Knapp
because he is a trusted source.

Activity (cont)

• Flash forward to the day after the final exam.

• Dr. Cusack grades all the final exams using the
stair method and no one receives an A.

• The class is outraged. Dr. Cusack has lied!

• Everyone then decides to go to the Provost to
make sure that they all get the A that Dr. Cusack
promised them.

Activity (cont)

• The Provost hears what the students have to say
and he asks them to prove their claim.

• To do this they grab Dr. Cusack’s lockbox and get
Dr. Cusack’s key from President Knapp and they
unlock it.

• Inside holds the note that promises all the
students an A on their final exam.

Activity (cont)

• The note can only be from Dr. Cusack since only
his public key can unlock his unique padlock.

• Dr. Cusack, although reluctantly, gives all the
students an A on their final exam.

RSA Digital Signature Formula

Taken from: Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton: CRC
Press, 1995.

Proof of RSA Scheme

Taken from: Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton: CRC
Press, 1995.

Why does 𝑥𝜙(𝑛) = 1?

• 𝜙 𝑛 is the Euler function, which is defined as
the number of positive integers that are
relatively prime to n.

• The group of units, U(n) is defined as the
elements in ℤ𝑛 that are relatively prime to n.

• The order of U(n) is 𝜙 𝑛 .

• Thus when 𝑥 ∈ 𝑈 𝑛 , 𝑥𝜙(𝑛) = 1.

• When 𝑥 ∉ 𝑈(𝑛) there is a more complicated
proof, but the result is the same.

Why does 𝜙 𝑝𝑞 = (𝑝 − 1)(𝑛 −
1)?

Proof written by me in my Abstract Algebra class

Euclidean Algorithm Example

• gcd 81,57

• 81 = 1 57 + 24

• 57 = 2 24 + 9

• 24 = 2 9 + 6

• 9 = 1 6 + 3

• 6 = 2 3 + 0.

Finding the Inverse in ℤ𝑛

• If gcd(a,b) = r, then there exist integers p and s
such that p(a) + s(b) = r.

• x has an inverse if and only if gcd(x,n) = 1.

• Then p, and s exist such that px + sn = 1.

• px = 1 + (-s)n, so 𝑝𝑥 ≡ 1 (𝑚𝑜𝑑 𝑛).

• To find p, we will use the extended Euclidean
algorithm.

Example on Whiteboard

• Find inverse of 15 mod 26.

• Extended Euclidean Algorithm

• 𝑝𝑖−2 − 𝑝𝑖−1 ∙ 𝑞𝑖−1 (mod n)

• 𝑝0 = 0, 𝑝1 = 1.

In Class Worksheet

• Split into two groups.

Attacks on Digital Signatures

• No message attack

• Chosen message attack

No Message Attack

• Try to generate new valid signatures without the
knowledge of the private key.

• Attacker obtains victims public verification key.

• Attacker finds a message x and a signature for x
that can be verified with the victims public key.

• Called no message attack since no valid
signatures from other documents are used.

No Message Attack (cont.)

• Oscar chooses an integer s between 0 and n.

• He claims that it is a signature of Alice.

• Bob wants to verify this signature so he uses
Alice’s public verification key to do this.

• If the message is meaningful text, then Oscar has
successfully forged Alice’s signature.

Chosen Message Attack

• Attacker knows valid signatures and uses them
to create new signatures.

• Possible for an attacker to obtain signatures of
their choosing.

• From two valid signatures, a third can be
computed.

Chosen Message Attack

• Let m be a message. The attacker chooses an 𝑚1
that is different than m, such that gcd(m, 𝑚1) =
1.

• Calculates 𝑚2 = 𝑚𝑚1
−1 𝑚𝑜𝑑 𝑛

• Then the attacker uses the valid signatures 𝑠1, 𝑠2,
for 𝑚, 𝑚1 to compute 𝑠 = 𝑠1𝑠2 mod n.

Cryptographic Hash Functions

• Map strings of an arbitrary length to a fixed length string
of size between 128 and 512 bits.

• Always expected to be one way.

• Given a message y in the image, it is practically
impossible to find a message x such that H(x) = y.

• Each message should have a different hash value.

• This usually is not true, but it should be almost
impossible to find two messages with the same hash
value.

Hash Function Properties
• Collision resistance

• Difficult to find two messages that hash to the
same value.

• Preimage resistance

• Given hash value of a message, it should be
difficult to find any message hashing to that
value.

• Second preimage resistance

• Given some message, it should be difficult to
find a different message that has the same
hash value.

Properties (cont.)

FIgure taken from:
Thomsen, Søren Steffen. Cryptographic Hash Functions. Technical paper. Technical
University of Denemark Department of Mathematics.

Signatures With Hash
Functions
• Instead of computing the signature with the full

document x, we compute the signature on the
hash value of x.

• 𝑠 = ℎ(𝑥)𝑎 𝑚𝑜𝑑 𝑛 .

Signatures With Hash Functions
(cont.)
• To verify the signature we do:

• 𝑣𝑒𝑟 = 𝑠𝑏 𝑚𝑜𝑑 𝑛

• If 𝑣𝑒𝑟 = ℎ(𝑥) then the signature is authentic.

• The hashing function is public and x is shared,
thus it is easy to compute h(x).

Prevents Attacks

• No message attacks don’t work since the attacker
must come up with an x such that ℎ 𝑥 = 𝑠𝑎 𝑚𝑜𝑑 𝑛.

• Because the hash function is one way such an x
cannot be computed.

• Chosen message attacks don’t work since h is one
way it is impossible to find x such that ℎ 𝑥 = 𝑚 =
 𝑚1𝑚2 𝑚𝑜𝑑 𝑛.

Public Key Infrastructures

• It is very important to keep private keys private
and public keys safe from falsification.

• Thus a personal security environment (PSE) is
needed.

• Keys and securely stored here.

• The signing and decrypting also done here to
keep private keys secure.

Certification Authorities

• Each public key user is associated with a trusted
certification authority (CA).

• The CA certifies the correctness and validity of
the public keys of it’s users.

• The users know their CA’s public key and can
thus use it to verify the signatures from their CA.

Certification Authorities (cont.)

• Registration

• Tell CA name and other personal info.

• Present identification by going to CA in person.

• Given a unique username.

• Key Generation

• Generated in PSE or by CA.

• Recommended that individuals don’t know their
private keys.

• Private keys are stored in PSE

• Public keys in CA.

Certification and Archive

• Certification

• CA generates certificate which establishes
verifiable connection between user and public
keys.

• Archive

• Public key systems must be stored even after
they expire.

• CA stores certificates for public signature keys.

References
1. Buchmann, Johannes. Introduction to Cryptography. New York: Springer,

2004.

2. Engelfriet, Arnoud. "Crash Course on Cryptography: Digital Signatures." (in
Technology Encryption Crash Course @ Iusmentis.com). October 1, 2005.
http://www.iusmentis.com/technology/encryption/crashcourse/digitalsignat
ures/.

3. "Extended Euclidean Algorithm." Extended Euclidean Algorithm. Accessed
December 08, 2015. http://www-
math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html.

4. Judson, Thomas W. Abstract Algebra: Theory and Applications. Boston, MA:
PWS Pub., 1994.

5. Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton: CRC
Press, 1995.

6. Thomsen, Søren Steffen. Cryptographic Hash Functions. Technical paper.
Technical University of Denemark Department of Mathematics.

•

http://www.iusmentis.com/technology/encryption/crashcourse/digitalsignatures/
http://www.iusmentis.com/technology/encryption/crashcourse/digitalsignatures/
http://www.iusmentis.com/technology/encryption/crashcourse/digitalsignatures/
http://www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html
http://www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html
http://www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html

