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Opening Activity
* Dr. Cusack owns a lockbox, padlock, and keys.

* The padlock is private and unique to him.

* The keys are public and they can only open Dr.
Cusack’s lockbox.

* Only Dr. Cusack can lock his padlock (It’s a very
smart padlock).




Activity (cont)

* Dr. Cusack has promised the whole class that
everyone will receive an A on their final exam.

* To hold true to his word, he writes his promise
on a piece of paper and locks it into the lockbox
with his padlock.

* He then gives his keys to President Knapp
because he is a trusted source.




Activity (cont)

* Flash forward to the day after the final exam.

* Dr. Cusack grades all the final exams using the
stair method and no one receives an A.

* The class is outraged. Dr. Cusack has lied!

* Everyone then decides to go to the Provost to
make sure that they all get the A that Dr. Cusack
promised them.




Activity (cont)

* The Provost hears what the students have to say
and he asks them to prove their claim.

* To do this they grab Dr. Cusack’s lockbox and get
Dr. Cusack’s key from President Knapp and they
unlock it.

* Inside holds the note that promises all the
students an A on their final exam.




Activity (cont)

* The note can only be from Dr. Cusack since only
his public key can unlock his unique padlock.

* Dr. Cusack, although reluctantly, gives all the
students an A on their final exam.




RSA Digital Signature Formula

Let n = pg, where p and g are primes. Let P = A = Z,, and define

K ={(n,p,q,a,b) : n = pq, p,q prime, ab = 1 (mod¢(n)))}.
The values n and a are public, and the values p, g, b are secret.
For K = (n, p, q, a, b), define

b mod n

sigg(x) = x
and

verg(x,y) = true & x = y* (mod n)

(x,y) € Z.




Proof of RSA Scheme

The formal description of the cryptosystem is given in Figure 4.2. Let’s verify
that encryption and decryption are inverse operations. Since

ab =1 (mod ¢(n)),

we have that

ab =tp(n) +1
for some integer ¢ > 1. Suppose that x € Z,,*; then we have

(2°)? = Zté(n)+! (mod n)

= (z*™)fz (mod n)

= 1z (mod n)
z (mod n),

Taken from: Stinson, Douglas R. Cryptography: Theory and Practice. Boca R
Pr




Why does x?™ = 17

* ¢(n) is the Euler function, which is defined as
the number of positive integers that are
relatively prime to n.

T
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ne group of units, U(n) is defined as the
ements in Z,, that are relatively prime to n.

ne order of U(n) is ¢p(n).

hus when x € U(n), x®M™ = 1.

* When x € U(n) there is a more complicated
proof, but the result is the same.




Why does ¢(pq) = (p — 1)(n —
1)?

3a) Proof: By Corollary 4.7, the generators of Zy, are all the itegers r such that I < r < n and
ged(r, pg) = 1. Thus the numbers p, 2p, 3, ..., (g~ 1)p cannot generate Z, since they are all multiples of p.
Similarly, the numbers g, 2q, 3¢, ..., (p - 1)q cannot generate Z, since they are all multiples of ¢. Itis clear
that 0 also cannot generate Zy,. Then the total number of generators of Zy, 1s pg - (- 1) - (p-1)-1=
pg-q-p+2-1=pg-q-p+1=plg-1)-(g-1)=(p-1)g-1). Therefore there are (p-1)(q-1)
generators of Zy,0

Proof written by me in my Abstract Alg



Euclidean Algorithm Example

» gcd(81,57)

- 81 = 1(57) + 24
57 = 2(24) + 9
24 =209 +6
*9=1(6) + 3

6 =2(3)+0.




Finding the Inverse in Z,,

* If gcd(a,b) =1, then there exist integers p and s
such that p(a) + s(b) =r.

* x has an inverse if and only if gcd(x,n) = 1.

* Then p, and s exist such that px + sn = 1.

*px=1+(-s)n,sopx = 1 (mod n).

* To find p, we will use the extended Euclidean
algorithm.




Example on Whiteboard

* Find inverse of 15 mod 26.

* Extended Euclidean Algorithm
Pi—2 — Pi-1 " qi—1 (mod n)
po=0,p1 = 1.




In Class Worksheet

* Split into two groups.




Attacks on Digital Signatures

* No message attack

* Chosen message attack




No Message Attack

* Try to generate new valid signatures without the
knowledge of the private key.

* Attacker obtains victims public verification key.

* Attacker finds a message x and a signature for x
that can be verified with the victims public key.

* Called no message attack since no valid
signatures from other documents are used.




No Message Attack (cont.)

* Oscar chooses an integer s between 0 and n.
* He claims that it is a signature of Alice.

* Bob wants to verify this sighature so he uses
Alice’s public verification key to do this.

* If the message is meaningful text, then Oscar has
successfully forged Alice’s signature.




Chosen Message Attack

 Attacker knows valid signatures and uses them
to create new signatures.

* Possible for an attacker to obtain signatures of
their choosing.

* From two valid signatures, a third can be
computed.




Chosen Message Attack

Let m be a message. The attacker chooses an m4
that is different than m, such that gcd(m, m,) =
1.

Calculates m, = mm; ! mod n

Then the attacker uses the valid signatures s, s,,
for m, my to compute s = s;5, mod n.




Cryptographic Hash Functions

* Map strings of an arbitrary length to a fixed length string
of size between 128 and 512 bits.

* Always expected to be one way.

Given a message y in the image, it is practically
impossible to find a message x such that H(x) = .

* Each message should have a different hash value.

This usually is not true, but it should be almost
impossible to find two messages with the same hash
value.




Hash Function Properties

* Collision resistance

Difficult to find two messages that hash to the
same value.

* Preimage resistance

Given hash value of a message, it should be
difficult to find any message hashing to that
value.

* Second preimage resistance

Given some message, it should be difficult to
find a different message that has the same
hash value.




Properties (cont.)

CaACKCy

a) Collision (b) Premmage ¢) Second preimage

Flgure taken from:
Thomsen, Sgren Steffen. Cryptographic Hash Functions. Technical paper. Technical
University of Denemark Department of Mathematics



Signatures With Hash
Functions

* Instead of computing the signature with the full
document x, we compute the signature on the
hash value of x.

*s = h(x)% (mod n).




Signatures With Hash Functions
(cont.)

* To verify the signature we do:

ver = s? (mod n)
* If ver = h(x) then the signature is authentic.

* The hashing function is public and x is shared,
thus it is easy to compute h(x).




Prevents Attacks

* No message attacks don’t work since the attacker
must come up with an x such that h(x) = s% mod n.

Because the hash function is one way such an x
cannot be computed.

* Chosen message attacks don’t work since h is one
way it is impossible to find x such that h(x) = m =
mym, mod n.




Public Key Infrastructures

* It is very important to keep private keys private
and public keys safe from falsification.

* Thus a personal security environment (PSE) is
needed.

Keys and securely stored here.

The signing and decrypting also done here to
keep private keys secure.




Certification Authorities

* Each public key user is associated with a trusted
certification authority (CA).

* The CA certifies the correctness and validity of
the public keys of it’s users.

* The users know their CA’s public key and can
thus use it to verify the signatures from their CA.




Certification Authorities (cont.)

* Registration
Tell CA name and other personal info.
Present identification by going to CA in person.
Given a unigue username.
* Key Generation
Generated in PSE or by CA.

Recommended that individuals don’t know their
private keys.

Private keys are stored in PSE
Public keys in CA.




Certification and Archive

* Certification

CA generates certificate which establishes
verifiable connection between user and public
keys.

* Archive

Public key systems must be stored even after
they expire.

CA stores certificates for public signature keys.
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