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Opening Activity 

• Dr. Cusack owns a lockbox, padlock, and keys. 

 

• The padlock is private and unique to him. 

 

• The keys are public and they can only open Dr. 
Cusack’s lockbox. 

 

• Only Dr. Cusack can lock his padlock (It’s a very 
smart padlock). 



Activity (cont) 

• Dr. Cusack has promised the whole class that 
everyone will receive an A on their final exam. 

  

• To hold true to his word, he writes his promise 
on a piece of paper and locks it into the lockbox 
with his padlock.  
 

• He then gives his keys to President Knapp 
because he is a trusted source.  



Activity (cont) 

• Flash forward to the day after the final exam. 

 

• Dr. Cusack grades all the final exams using the 
stair method and no one receives an A. 

 

• The class is outraged. Dr. Cusack has lied!  

 

• Everyone then decides to go to the Provost to 
make sure that they all get the A that Dr. Cusack 
promised them.  



Activity (cont) 

• The Provost hears what the students have to say 
and he asks them to prove their claim. 

 

• To do this they grab Dr. Cusack’s lockbox and get 
Dr. Cusack’s key from President Knapp and they 
unlock it. 

 

• Inside holds the note that promises all the 
students an A on their final exam.  



Activity (cont) 

• The note can only be from Dr. Cusack since only 
his public key can unlock his unique padlock.  

 

• Dr. Cusack, although reluctantly, gives all the 
students an A on their final exam.  



RSA Digital Signature Formula 

Taken from: Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton: CRC 
Press, 1995. 

 



Proof of RSA Scheme 

Taken from: Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton: CRC 
Press, 1995. 

 



Why does 𝑥𝜙(𝑛) = 1? 

• 𝜙 𝑛  is the Euler function, which is defined as 
the number of positive integers that are 
relatively prime to n.  

• The group of units, U(n) is defined as the 
elements in ℤ𝑛 that are relatively prime to n. 

• The order of U(n) is 𝜙 𝑛 . 

• Thus when 𝑥 ∈ 𝑈 𝑛 , 𝑥𝜙(𝑛) = 1. 

• When 𝑥 ∉ 𝑈(𝑛) there is a more complicated 
proof, but the result is the same.  
 



Why does 𝜙 𝑝𝑞 = (𝑝 − 1)(𝑛 −
1)? 

Proof written by me in my Abstract Algebra class 
 



Euclidean Algorithm Example 

• gcd 81,57  

• 81 = 1 57 + 24 

• 57 = 2 24 + 9 

• 24 = 2 9 + 6 

• 9 = 1 6 + 3 

• 6 = 2 3 + 0. 
 

 

 

 



Finding the Inverse in ℤ𝑛 

• If gcd(a,b) = r, then there exist integers p and s 
such that p(a) + s(b) = r. 

• x has an inverse if and only if gcd(x,n) = 1.  

• Then p, and s exist such that px + sn = 1. 

• px = 1 + (-s)n, so 𝑝𝑥 ≡ 1 (𝑚𝑜𝑑 𝑛). 

• To find p, we will use the extended Euclidean 
algorithm. 



Example on Whiteboard 

• Find inverse of 15 mod 26. 

 

• Extended Euclidean Algorithm 

• 𝑝𝑖−2 − 𝑝𝑖−1 ∙ 𝑞𝑖−1 (mod n) 

• 𝑝0 = 0, 𝑝1 = 1. 



In Class Worksheet 

• Split into two groups. 



Attacks on Digital Signatures 

• No message attack 

 

• Chosen message attack 

 



No Message Attack 

• Try to generate new valid signatures without the 
knowledge of the private key. 

 

• Attacker obtains victims public verification key. 

 

• Attacker finds a message x and a signature for x 
that can be verified with the victims public key. 

 

• Called no message attack since no valid 
signatures from other documents are used.  



No Message Attack (cont.) 

• Oscar chooses an integer s between 0 and n.  

• He claims that it is a signature of Alice. 

 

• Bob wants to verify this signature so he uses 
Alice’s public verification  key to do this.  

 

• If the message is meaningful text, then Oscar has 
successfully forged Alice’s signature.  



Chosen Message Attack 

• Attacker knows valid signatures and uses them 
to create new signatures. 

 

• Possible for an attacker to obtain signatures of 
their choosing.  

 

• From two valid signatures, a third can be 
computed. 



Chosen Message Attack 

• Let m be a message. The attacker chooses an 𝑚1 
that is different than m, such that gcd(m, 𝑚1) = 
1. 

 

• Calculates 𝑚2 = 𝑚𝑚1
−1 𝑚𝑜𝑑 𝑛 

 

• Then the attacker uses the valid signatures 𝑠1, 𝑠2, 
for 𝑚, 𝑚1 to compute 𝑠 = 𝑠1𝑠2 mod n. 



Cryptographic Hash Functions 

• Map strings of an arbitrary length to a fixed length string 
of size between 128 and 512 bits. 

 

• Always expected to be one way. 

• Given a message y in the image, it is practically 
impossible to find a message x such that H(x) = y. 

 

• Each message should have a different hash value. 

• This usually is not true, but it should be almost 
impossible to find two messages with the same hash 
value.  



Hash Function Properties 
• Collision resistance 

• Difficult to find two messages that hash to the 
same value. 

• Preimage resistance 

• Given hash value of a message, it should be 
difficult to find any message hashing to that 
value. 

• Second preimage resistance 

• Given some message, it should be difficult to 
find a different message that has the same 
hash value. 



Properties (cont.) 

FIgure  taken from: 
Thomsen, Søren Steffen. Cryptographic Hash Functions. Technical paper. Technical 
University of Denemark Department of Mathematics. 
 



Signatures With Hash 
Functions 
• Instead of computing the signature with the full 

document x, we compute the signature on the 
hash value of x. 

 

• 𝑠 = ℎ(𝑥)𝑎 𝑚𝑜𝑑 𝑛 . 

 

 



Signatures With Hash Functions 
(cont.) 
• To verify the signature we do: 

• 𝑣𝑒𝑟 = 𝑠𝑏 𝑚𝑜𝑑 𝑛  

 

• If 𝑣𝑒𝑟 = ℎ(𝑥) then the signature is authentic. 

 

• The hashing function is public and x is shared, 
thus it is easy to compute h(x). 



Prevents Attacks 

• No message attacks don’t work since the attacker 
must come up with an x such that ℎ 𝑥 = 𝑠𝑎 𝑚𝑜𝑑 𝑛. 

• Because the hash function is one way such an x 
cannot be computed.  

 

• Chosen message attacks don’t work since h is one 
way it is impossible to find x such that ℎ 𝑥 = 𝑚 =
 𝑚1𝑚2 𝑚𝑜𝑑 𝑛. 



Public Key Infrastructures 

• It is very important to keep private keys private 
and public keys safe from falsification. 

 

• Thus a personal security environment (PSE) is 
needed. 

• Keys and securely stored here. 

• The signing and decrypting also done here to 
keep private keys secure. 



Certification Authorities 

• Each public key user is associated with a trusted 
certification authority (CA). 

 

• The CA certifies the correctness and validity of 
the public keys of it’s users.  

 

• The users know their CA’s public key and can 
thus use it to verify the signatures from their CA. 



Certification Authorities (cont.) 

• Registration 

• Tell CA name and other personal info. 

• Present identification by going to CA in person. 

• Given a unique username. 

• Key Generation 

• Generated in PSE or by CA. 

• Recommended that individuals don’t know their 
private keys.  

• Private keys are stored in PSE 

• Public keys in CA. 



Certification and Archive 

• Certification 

• CA generates certificate which establishes 
verifiable connection between user and public 
keys. 

• Archive 

• Public key systems must be stored even after 
they expire. 

• CA stores certificates for public signature keys. 
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