Digital Signatures

Cole Watson

Opening Activity

- Dr. Cusack owns a lockbox, padlock, and keys.
- The padlock is private and unique to him.
- The keys are public and they can only open Dr. Cusack's lockbox.
- Only Dr. Cusack can lock his padlock (It's a very smart padlock).

- Dr. Cusack has promised the whole class that everyone will receive an A on their final exam.
- To hold true to his word, he writes his promise on a piece of paper and locks it into the lockbox with his padlock.
- He then gives his keys to President Knapp because he is a trusted source.

- Flash forward to the day after the final exam.
- Dr. Cusack grades all the final exams using the stair method and no one receives an A.
- The class is outraged. Dr. Cusack has lied!
- Everyone then decides to go to the Provost to make sure that they all get the A that Dr. Cusack promised them.

- The Provost hears what the students have to say and he asks them to prove their claim.
- To do this they grab Dr. Cusack's lockbox and get Dr. Cusack's key from President Knapp and they unlock it.
- Inside holds the note that promises all the students an A on their final exam.

- The note can only be from Dr. Cusack since only his public key can unlock his unique padlock.
- Dr. Cusack, although reluctantly, gives all the students an A on their final exam.

RSA Digital Signature Formula

Let n = pq, where p and q are primes. Let $\mathcal{P} = \mathcal{A} = \mathbb{Z}_n$, and define

 $\mathcal{K} = \{(n, p, q, a, b) : n = pq, p, q \text{ prime}, ab \equiv 1 \pmod{\phi(n)}\}.$

The values n and a are public, and the values p, q, b are secret.

For K = (n, p, q, a, b), define

 $sig_K(x) = x^b \mod n$

and

$$ver_K(x, y) = true \Leftrightarrow x \equiv y^a \pmod{n}$$

 $(x, y) \in \mathbb{Z}.$

iton: CRC Fress, 1995.

Proof of RSA Scheme

The formal description of the cryptosystem is given in Figure 4.2. Let's verify that encryption and decryption are inverse operations. Since

 $ab \equiv 1 \pmod{\phi(n)},$

we have that

 $ab = t\phi(n) + 1$

for some integer $t \ge 1$. Suppose that $x \in \mathbb{Z}_n^*$; then we have

$$(x^{b})^{a} \equiv x^{t\phi(n)+1} \pmod{n}$$
$$\equiv (x^{\phi(n)})^{t}x \pmod{n}$$
$$\equiv 1^{t}x \pmod{n}$$
$$\equiv x \pmod{n},$$

Taken from: Stinson, Douglas R. *Cryptography: Theory and Practice*. Boca Raton: CRC Press, 1995.

Why does $x^{\phi(n)} = 1$?

- φ(n) is the Euler function, which is defined as the number of positive integers that are relatively prime to n.
- The group of units, U(n) is defined as the elements in Z_n that are relatively prime to n.
- The order of U(n) is $\phi(n)$.
- Thus when $x \in U(n)$, $x^{\phi(n)} = 1$.
- When $x \notin U(n)$ there is a more complicated proof, but the result is the same.

Why does $\phi(pq) = (p - 1)(n - 1)$?

3a) *Proof:* By Corollary 4.7, the generators of \mathbb{Z}_{pq} are all the integers r such that $1 \le r < n$ and gcd(r, pq) = 1. Thus the numbers p, 2p, 3p, ..., (q-1)p cannot generate \mathbb{Z}_{pq} since they are all multiples of p. Similarly, the numbers q, 2q, 3q, ..., (p-1)q cannot generate \mathbb{Z}_{pq} since they are all multiples of q. It is clear that 0 also cannot generate \mathbb{Z}_{pq} . Then the total number of generators of \mathbb{Z}_{pq} is pq - (q-1) - (p-1) - 1 = pq - q - p + 2 - 1 = pq - q - p + 1 = p(q-1) - (q-1) = (p-1)(q-1). Therefore there are (p-1)(q-1) generators of $\mathbb{Z}_{pq}\Box$

Euclidean Algorithm Example

- gcd(81,57)
- 81 = 1(57) + 24
- 57 = 2(24) + 9
- 24 = 2(9) + 6
- 9 = 1(6) + 3
- 6 = 2(3) + 0.

Finding the Inverse in \mathbb{Z}_n

- If gcd(a,b) = r, then there exist integers p and s such that p(a) + s(b) = r.
- x has an inverse if and only if gcd(x,n) = 1.
- Then p, and s exist such that px + sn = 1.
- px = 1 + (-s)n, so $px \equiv 1 \pmod{n}$.
- To find p, we will use the extended Euclidean algorithm.

Example on Whiteboard

- Find inverse of 15 mod 26.
- Extended Euclidean Algorithm

•
$$p_{i-2} - p_{i-1} \cdot q_{i-1} \pmod{n}$$

•
$$p_0 = 0, p_1 = 1.$$

In Class Worksheet

• Split into two groups.

Attacks on Digital Signatures

- No message attack
- Chosen message attack

No Message Attack

- Try to generate new valid signatures without the knowledge of the private key.
- Attacker obtains victims public verification key.
- Attacker finds a message x and a signature for x that can be verified with the victims public key.
- Called no message attack since no valid signatures from other documents are used.

No Message Attack (cont.)

- Oscar chooses an integer s between 0 and n.
- He claims that it is a signature of Alice.
- Bob wants to verify this signature so he uses Alice's public verification key to do this.
- If the message is meaningful text, then Oscar has successfully forged Alice's signature.

Chosen Message Attack

- Attacker knows valid signatures and uses them to create new signatures.
- Possible for an attacker to obtain signatures of their choosing.
- From two valid signatures, a third can be computed.

Chosen Message Attack

- Let m be a message. The attacker chooses an m₁ that is different than m, such that gcd(m, m₁) = 1.
- Calculates $m_2 = mm_1^{-1} \mod n$
- Then the attacker uses the valid signatures s_1, s_2 , for m, m_1 to compute $s = s_1 s_2 \mod n$.

Cryptographic Hash Functions

- Map strings of an arbitrary length to a fixed length string of size between 128 and 512 bits.
- Always expected to be one way.
 - Given a message y in the image, it is practically impossible to find a message x such that H(x) = y.
- Each message should have a different hash value.
 - This usually is not true, but it should be almost impossible to find two messages with the same hash value.

Hash Function Properties

- Collision resistance
 - Difficult to find two messages that hash to the same value.
- Preimage resistance
 - Given hash value of a message, it should be difficult to find any message hashing to that value.
- Second preimage resistance
 - Given some message, it should be difficult to find a different message that has the same hash value.

Properties (cont.)

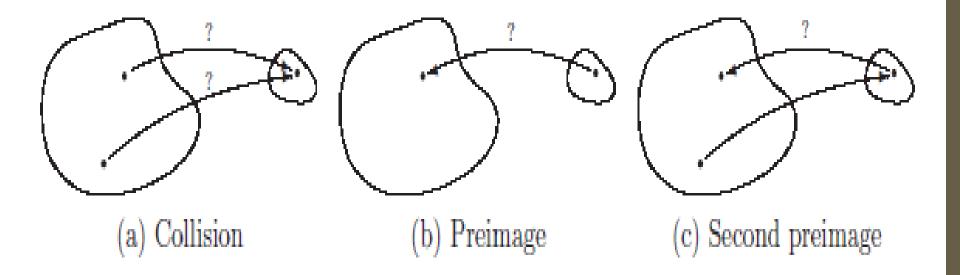


Figure taken from:

Thomsen, Søren Steffen. *Cryptographic Hash Functions*. Technical paper. Technical University of Denemark Department of Mathematics.

Signatures With Hash Functions

- Instead of computing the signature with the full document x, we compute the signature on the hash value of x.
- $s = h(x)^a \pmod{n}$.

Signatures With Hash Functions (cont.)

- To verify the signature we do:
 - $ver = s^b \pmod{n}$
- If ver = h(x) then the signature is authentic.
- The hashing function is public and x is shared, thus it is easy to compute h(x).

Prevents Attacks

- No message attacks don't work since the attacker must come up with an x such that $h(x) = s^a \mod n$.
 - Because the hash function is one way such an x cannot be computed.
- Chosen message attacks don't work since h is one way it is impossible to find x such that $h(x) = m = m_1 m_2 \mod n$.

Public Key Infrastructures

- It is very important to keep private keys private and public keys safe from falsification.
- Thus a *personal security environment (PSE)* is needed.
 - Keys and securely stored here.
 - The signing and decrypting also done here to keep private keys secure.

Certification Authorities

- Each public key user is associated with a trusted *certification authority (CA)*.
- The CA certifies the correctness and validity of the public keys of it's users.
- The users know their CA's public key and can thus use it to verify the signatures from their CA.

Certification Authorities (cont.)

- Registration
 - Tell CA name and other personal info.
 - Present identification by going to CA in person.
 - Given a unique username.
- Key Generation
 - Generated in PSE or by CA.
 - Recommended that individuals don't know their private keys.
 - Private keys are stored in PSE
 - Public keys in CA.

Certification and Archive

- Certification
 - CA generates certificate which establishes verifiable connection between user and public keys.
- Archive
 - Public key systems must be stored even after they expire.
 - CA stores certificates for public signature keys.

References

- 1. Buchmann, Johannes. *Introduction to Cryptography*. New York: Springer, 2004.
- Engelfriet, Arnoud. "Crash Course on Cryptography: Digital Signatures." (in Technology Encryption Crash Course @ Iusmentis.com). October 1, 2005. <u>http://www.iusmentis.com/technology/encryption/crashcourse/digitalsignatures/</u>.
- 3. "Extended Euclidean Algorithm." Extended Euclidean Algorithm. Accessed December 08, 2015. <u>http://www-</u> <u>math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html</u>.
- 4. Judson, Thomas W. *Abstract Algebra: Theory and Applications*. Boston, MA: PWS Pub., 1994.
- 5. Stinson, Douglas R. *Cryptography: Theory and Practice*. Boca Raton: CRC Press, 1995.
- 6. Thomsen, Søren Steffen. *Cryptographic Hash Functions*. Technical paper. Technical University of Denemark Department of Mathematics.